3.1015 \(\int \frac{A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt{\sec (c+d x)} (a+b \sec (c+d x))} \, dx\)

Optimal. Leaf size=157 \[ -\frac{2 (A b-a B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )}{a^2 d}+\frac{2 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \left (A b^2-a (b B-a C)\right ) \Pi \left (\frac{2 a}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{a^2 d (a+b)}+\frac{2 A \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a d} \]

[Out]

(2*A*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a*d) - (2*(A*b - a*B)*Sqrt[Cos[c + d*x]
]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a^2*d) + (2*(A*b^2 - a*(b*B - a*C))*Sqrt[Cos[c + d*x]]*Ellipt
icPi[(2*a)/(a + b), (c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a^2*(a + b)*d)

________________________________________________________________________________________

Rubi [A]  time = 0.288498, antiderivative size = 157, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 7, integrand size = 43, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.163, Rules used = {4106, 3849, 2805, 3787, 3771, 2639, 2641} \[ \frac{2 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \left (A b^2-a (b B-a C)\right ) \Pi \left (\frac{2 a}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{a^2 d (a+b)}-\frac{2 (A b-a B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a^2 d}+\frac{2 A \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a d} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(Sqrt[Sec[c + d*x]]*(a + b*Sec[c + d*x])),x]

[Out]

(2*A*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a*d) - (2*(A*b - a*B)*Sqrt[Cos[c + d*x]
]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a^2*d) + (2*(A*b^2 - a*(b*B - a*C))*Sqrt[Cos[c + d*x]]*Ellipt
icPi[(2*a)/(a + b), (c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a^2*(a + b)*d)

Rule 4106

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d
_.)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))), x_Symbol] :> Dist[(A*b^2 - a*b*B + a^2*C)/(a^2*d^2), Int[(d*Csc[
e + f*x])^(3/2)/(a + b*Csc[e + f*x]), x], x] + Dist[1/a^2, Int[(a*A - (A*b - a*B)*Csc[e + f*x])/Sqrt[d*Csc[e +
 f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0]

Rule 3849

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[d*Sqrt[d*S
in[e + f*x]]*Sqrt[d*Csc[e + f*x]], Int[1/(Sqrt[d*Sin[e + f*x]]*(b + a*Sin[e + f*x])), x], x] /; FreeQ[{a, b, d
, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 3787

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt{\sec (c+d x)} (a+b \sec (c+d x))} \, dx &=\frac{\int \frac{a A-(A b-a B) \sec (c+d x)}{\sqrt{\sec (c+d x)}} \, dx}{a^2}+\frac{\left (A b^2-a b B+a^2 C\right ) \int \frac{\sec ^{\frac{3}{2}}(c+d x)}{a+b \sec (c+d x)} \, dx}{a^2}\\ &=\frac{A \int \frac{1}{\sqrt{\sec (c+d x)}} \, dx}{a}-\frac{(A b-a B) \int \sqrt{\sec (c+d x)} \, dx}{a^2}+\frac{\left (\left (A b^2-a b B+a^2 C\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)} (b+a \cos (c+d x))} \, dx}{a^2}\\ &=\frac{2 \left (A b^2-a (b B-a C)\right ) \sqrt{\cos (c+d x)} \Pi \left (\frac{2 a}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{a^2 (a+b) d}+\frac{\left (A \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \, dx}{a}-\frac{\left ((A b-a B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{a^2}\\ &=\frac{2 A \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{a d}-\frac{2 (A b-a B) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{a^2 d}+\frac{2 \left (A b^2-a (b B-a C)\right ) \sqrt{\cos (c+d x)} \Pi \left (\frac{2 a}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{a^2 (a+b) d}\\ \end{align*}

Mathematica [F]  time = 13.2909, size = 0, normalized size = 0. \[ \int \frac{A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt{\sec (c+d x)} (a+b \sec (c+d x))} \, dx \]

Verification is Not applicable to the result.

[In]

Integrate[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(Sqrt[Sec[c + d*x]]*(a + b*Sec[c + d*x])),x]

[Out]

Integrate[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(Sqrt[Sec[c + d*x]]*(a + b*Sec[c + d*x])), x]

________________________________________________________________________________________

Maple [A]  time = 2.664, size = 323, normalized size = 2.1 \begin{align*} 2\,{\frac{\sqrt{ \left ( 2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{-2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1}}{ \left ( a-b \right ){a}^{2}\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sin \left ( 1/2\,dx+c/2 \right ) \sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}d} \left ( A{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) ab-A{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ){b}^{2}+A{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ){a}^{2}-A{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) ab+A{\it EllipticPi} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,2\,{\frac{a}{a-b}},\sqrt{2} \right ){b}^{2}-B{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ){a}^{2}+B{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) ab-B{\it EllipticPi} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,2\,{\frac{a}{a-b}},\sqrt{2} \right ) ab+C{\it EllipticPi} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,2\,{\frac{a}{a-b}},\sqrt{2} \right ){a}^{2} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/sec(d*x+c)^(1/2)/(a+b*sec(d*x+c)),x)

[Out]

2*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^
2+1)^(1/2)*(A*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*a*b-A*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*b^2+A*Elliptic
E(cos(1/2*d*x+1/2*c),2^(1/2))*a^2-A*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a*b+A*EllipticPi(cos(1/2*d*x+1/2*c),
2*a/(a-b),2^(1/2))*b^2-B*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*a^2+B*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*a*b
-B*EllipticPi(cos(1/2*d*x+1/2*c),2*a/(a-b),2^(1/2))*a*b+C*EllipticPi(cos(1/2*d*x+1/2*c),2*a/(a-b),2^(1/2))*a^2
)/a^2/(a-b)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)
^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A}{{\left (b \sec \left (d x + c\right ) + a\right )} \sqrt{\sec \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/sec(d*x+c)^(1/2)/(a+b*sec(d*x+c)),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)/((b*sec(d*x + c) + a)*sqrt(sec(d*x + c))), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/sec(d*x+c)^(1/2)/(a+b*sec(d*x+c)),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{A + B \sec{\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}}{\left (a + b \sec{\left (c + d x \right )}\right ) \sqrt{\sec{\left (c + d x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)**2)/sec(d*x+c)**(1/2)/(a+b*sec(d*x+c)),x)

[Out]

Integral((A + B*sec(c + d*x) + C*sec(c + d*x)**2)/((a + b*sec(c + d*x))*sqrt(sec(c + d*x))), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A}{{\left (b \sec \left (d x + c\right ) + a\right )} \sqrt{\sec \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/sec(d*x+c)^(1/2)/(a+b*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)/((b*sec(d*x + c) + a)*sqrt(sec(d*x + c))), x)